Algebra 2

6-03 Rewrite Exponential as Logarithmic Functions (6.3)

Logarithms

- Logarithms are \qquad
- $\log _{b} a=$ \qquad of b to get a
$\log _{3} 81$ $\log _{3} 3$

Calculator has two logs

- Log: $\log =\log _{10}$
- Log: $\ln =\log _{e}$
- (Some calculators can do log of any base.)
$\log 6 \quad \ln \frac{1}{3}$

Definition of Logarithm with Base b

$$
\log _{b} y=x \Leftrightarrow b^{x}=y
$$

- Read as "log base b of y equals x "
- Logs = \qquad !!
- Logs and exponentials are \qquad
- They \qquad each other
- They \qquad each other out
Rewrite as an exponential: $\log _{3} 9=2$

Rewrite as a log: $6^{2}=36$

Simplify log expressions

If exponential with base b and \log with base b are inside each other, they
\square
$312 \# 1,3,5,7,9,11,13,15,17,23,25,31,33,35,37,75,77,79,83,85=20$

